Improving materials property predictions for graph neural networks with minimal feature engineering & nbsp;

MACHINE LEARNING-SCIENCE AND TECHNOLOGY(2023)

引用 0|浏览1
暂无评分
摘要
Graph neural networks (GNNs) have been employed in materials research to predict physical and functional properties, and have achieved superior performance in several application domains over prior machine learning approaches. Recent studies incorporate features of increasing complexity such as Gaussian radial functions, plane wave functions, and angular terms to augment the neural network models, with the expectation that these features are critical for achieving a high performance. Here, we propose a GNN that adopts edge convolution where hidden edge features evolve during training and extensive attention mechanisms, and operates on simple graphs with atoms as nodes and distances between them as edges. As a result, the same model can be used for very different tasks as no other domain-specific features are used. With a model that uses no feature engineering, we achieve performance comparable with state-of-the-art models with elaborate features for formation energy and band gap prediction with standard benchmarks; we achieve even better performance when the dataset size increases. Although some domain-specific datasets still require hand-crafted features to achieve state-of-the-art results, our selected architecture choices greatly reduce the need for elaborate feature engineering and still maintain predictive power in comparison.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要