Bioactive calcium phosphate coatings applied to flexible poly(carbonate urethane) foils

SURFACE & COATINGS TECHNOLOGY(2023)

引用 0|浏览5
暂无评分
摘要
Long-term fixation of orthopaedic implants can be enhanced by tissue ingrowth techniques. As such, the deposition of a bioactive bone-like coating could be considered a promising method to facilitate the integration of implants onto bone tissue. In this study, we identified the optimized osteo-conductive Calcium Phosphate (CaP) coating parameters for deposition on PolyCarbonate-Urethane (PCU) foils. The oxygen plasma surfaceactivated PCU specimens were suspended in simulated body fluid (SBF) and supersaturated SBFs for 4 h, 8 h, 24 h, or 6 days at a temperature of 20 degrees C, 37 degrees C, or 50 degrees C. This resulted in semi-crystalline CaP coatings on a thin flexible foil via a one-step low-temperature aqueous technique. The deposited CaP coatings demonstrated high stability and remained intact upon bending deformation. According to the in vitro cell assessments, the conducted CaP coatings did not influence cell viability nor cell proliferation compared to the bare PCU substrate. In addition, the deposited CaP coatings enhanced the cell-mediated calcium deposition. All in all, this paper demonstrates a promising method to apply stable bioactive coatings to flexible PCU foils, which can be a promising strategy for the enhanced integration of PCU implants onto bone.
更多
查看译文
关键词
Polycarbonate urethane,Calcium phosphate coating,Calcification,Compliant substrate,Thin film,Mechanical integration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要