Q-Compensated Gaussian Beam Migration under the Condition of Irregular Surface

REMOTE SENSING(2023)

引用 0|浏览3
暂无评分
摘要
The viscosity of actual underground media can cause amplitude attenuation and phase distortion of seismic waves. When seismic images are processed assuming elastic media, the imaging accuracy for the deep reflective layer is often reduced. If this attenuation effect is compensated, the imaging quality of the seismic data can be significantly improved. Q-compensated Gaussian beam migration (Q-GBM) is an effective seismic imaging method for viscous media, and it has the advantages of both wave equation and ray-based Q-compensated imaging methods. This study develops a Q-GBM method in visco-acoustic media with an irregular surface. Initially, the basic principles of Gaussian beam in visco-acoustic media are introduced. Then, by correcting the complex-value time of the Gaussian beam in visco-acoustic media, energy compensation and phase correction are carried out for the forward continuation wavefield at the seismic source of the irregular surface and the reverse continuation wavefield at the beam center, which effectively compensates the absorption and attenuation effects of visco-acoustic media on the seismic wavefield. Further, a Q-GBM method under the irregular surface is proposed using cross-correlation imaging conditions. Through migration tests for three numerical models of visco-acoustic media with irregular surfaces, it is verified that our method is an effective depth domain imaging technique for seismic data in visco-acoustic media under the condition of irregular surfaces.
更多
查看译文
关键词
irregular surface,beam,q-compensated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要