An efficient linearly implicit and energy-conservative scheme for two dimensional Klein-Gordon-Schrodinger equations

Hongwei Li,Yuna Yang, Xiangkun Li

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS(2024)

引用 0|浏览0
暂无评分
摘要
The Klein-Gordon-Schrodinger equations describe a classical model of interaction of nucleon field with meson field in physics, how to design the energy conservative and stable schemes is an important issue. This paper aims to develop a linearized energy-preserve, unconditionally stable and efficient scheme for Klein-Gordon-Schrodinger equations. Some auxiliary variables are utilized to circumvent the imaginary functions of Klein-Gordon-Schrodinger equations, and transform the original system into its real formulation. Based on the invariant energy quadratization approach, an equivalent system is deduced by introducing a Lagrange multiplier. Then the efficient and unconditionally stable scheme is designed to discretize the deduced equivalent system. A numerical analysis of the proposed scheme is presented to illustrate its uniquely solvability and convergence. Numerical examples are provided to validate accuracy, energy and mass conservation laws, and stability of our proposed method.
更多
查看译文
关键词
energy conservation,invariant energy quadratization approach,Klein-Gordon-Schrodinger equations,stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要