Broadband Optoelectronic Synapse Enables Compact Monolithic Neuromorphic Machine Vision for Information Processing

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 0|浏览8
暂无评分
摘要
Traditional machine vision is suffering from redundant sensing data, bulky structures, and high energy consumption. Biological-inspired neuromorphic systems are promising for compact and energy-efficient machine vision. Multifunctional optoelectronics enabling multispectrum sensitivity for broadband image sensing, feature extraction, and neuromorphic computing are vital for machine visions. Here, an optoelectronic synapse is designed that enables image sensing, convolutional processing, and computing. Multiple synaptic plasticity triggered by photons can implement photonic computing and information transmission. Convolutional processing is realized by ultralow energy kernel generators fully controlled by photons. Meanwhile, the device shows the ability of conductance modulations under electronic stimulations that implement neuromorphic computing. For the first time, this two-terminal broadband optoelectronic synapse enables front-end retinomorphic image sensing, convolutional processing, and back-end neuromorphic computing. The integrated photonic information encryption, convolutional image preprocessing, and neuromorphic computing capabilities are promising for compact monolithic neuromorphic machine vision systems.
更多
查看译文
关键词
convolutional neural networks, multispectrum sensitivity, neuromorphic computing, optoelectronic synapses, resistive switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要