Multivalued Memory via Freezing of Super-Hard Magnetic Domains in a Quasi 2D-Magnet

SMALL METHODS(2023)

引用 0|浏览7
暂无评分
摘要
The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage "0" or "1" bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to intermediate values between the saturation limits. In principle, this paves the way to multivalued bits, vastly increasing storage density. Single-molecule magnets, are good examples offering transitions between intramolecular quantum levels, but require ultra-low temperatures and limited relaxation time between magnetization states. It is showed here that the quasi 2D-Ising compound BaFe2(PO4)(2) overcomes these limitations. The combination of giant magneto-crystalline anisotropy, strong ferromagnetic exchange, and strong intrinsic pinning creates remarkably narrow magnetic domain walls, collectively freezing under T-f & AP;15 K. This results in a transition from a soft to a super-hard magnet (coercive force > 14 T). Any magnetization can then be printed and robustly protected from external fields with an energy barrier >9T at 2 K.
更多
查看译文
关键词
freezing,memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要