Metal-Organic Framework Reinforced Highly Stretchable and Durable Conductive Hydrogel-Based Triboelectric Nanogenerator for Biomotion Sensing and Wearable Human-Machine Interfaces

Muhammad Toyabur Rahman, Md Sazzadur Rahman,Hitendra Kumar,Keekyoung Kim,Seonghwan Kim

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 4|浏览2
暂无评分
摘要
Flexible triboelectric nanogenerators (TENGs) with multifunctional sensing capabilities offer an elegant solution to address the growing energy supply challenges for wearable smart electronics. Herein, a highly stretchable and durable electrode for wearable TENG is developed using ZIF-8 as a reinforcing nanofiller in a hydrogel with LiCl electrolyte. ZIF-8 nanocrystals improve the hydrogel's mechanical properties by forming hydrogen bonds with copolymer chains, resulting in 2.7 times greater stretchability than pure hydrogel. The hydrogel electrode is encapsulated by microstructured silicone layers that act as triboelectric materials and prevent water loss from the hydrogel. Optimized ZIF-8-based hydrogel electrodes enhance the output performance of TENG through the dynamic balance of electric double layers (EDLs) during contact electrification. Thus, the as-fabricated TENG delivers an excellent power density of 3.47 Wm(-)(2), which is 3.2 times higher than pure hydrogel-based TENG. The developed TENG can scavenge biomechanical energy even at subzero temperatures to power small electronics and serve as excellent self-powered pressure sensors for human-machine interfaces (HMIs). The nanocomposite hydrogel-based TENG can also function as a wearable biomotion sensor, detecting body movements with high sensitivity. This study demonstrates the significant potential of utilizing ZIF-8 reinforced hydrogel as an electrode for wearable TENGs in energy harvesting and sensor technology.
更多
查看译文
关键词
triboelectric nanogenerators, metal-organic frameworks, conductive hydrogels, multifunctional sensors, human-machine interfaces
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要