Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells

ENERGY & ENVIRONMENTAL SCIENCE(2023)

引用 10|浏览8
暂无评分
摘要
The inverted formamidinium (FA)-rich perovskite solar cells possess great potential in realizing high power conversion efficiency (PCE) and excellent stability. However, the uncontrollable crystallization and poor film quality of FA-rich perovskites are the main obstacles to further advancing photovoltaic performance. Here, we first propose a novel intermediate phase for assisting the crystallization strategy to fabricate high-quality perovskite films. After incorporating phenformin hydrochloride (PFCl) into the precursor solution, the intermediate phase PFCl & BULL;FAI decreases the generation of the & delta; yellow phase and promotes the orientational growth of the & alpha;-phase perovskite during crystallization. Combining multi-active-site S-methylisothiosemicarbazide hydroiodide (SMI) post-treatment, the bulk and interfacial trap-assisted nonradiative recombination losses are minimized, which is ascribed to much improved crystallization, reduced defects and released residual stress. As a result, the devices with PFCl@SMI demonstrate maximum PCEs of 24.67% (0.09 cm(2)) and 22.48% (1 cm(2)). The unencapsulated target devices exhibit promising thermal and light stabilities, retaining 84% of their initial PCE after 1008 h of continuous light illumination and 90% of their original PCE after 864 h of continuous heating at 85 & DEG;C. This work provides valuable guidelines for minimizing bulk and interfacial nonradiative recombination losses by rational organic salt engineering.
更多
查看译文
关键词
perovskite solar cells,holistic defect passivation,crystallization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要