Temperature dependence in tensile properties and deformation behavior of GH4169 alloy

JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL(2023)

引用 0|浏览1
暂无评分
摘要
The effect of temperature on the tensile properties and deformation mechanism of GH4169 alloy has been systematically studied over a wide range of room temperature (RT) to 1000 °C. The results indicate that the stress–strain curve of the alloy shows serrations at 200–600 °C, and the character of the serrations changes from type A to type B and then to type C at different temperatures. The ultimate tensile strength of the alloy decreases gradually from RT to 600 °C. The yield strength decreases slowly from RT to 700 °C but decreases rapidly above 800 °C. Transmission electron microscopy analysis relieves that the primary deformation mechanism of the alloy below 500 °C is Orowan bypass mechanism. At temperatures between 600 and 700 °C, the coordinated deformation of twins and cross-slip of dislocations are activated. The transformation of ^'' phase to δ phase above 650 °C will decrease the strength. The primary deformation mechanism above 800 °C transforms into the repeated shearing of ^'' by dislocations to form multiple stacking faults. Recrystallized grains were observed above 800 °C, and continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed. The stress concentration caused by Nb-rich carbides is the cause of intracrystalline crack nucleation. At 700 °C, grain boundary crack sprouting is caused by the combined effect of slip band impact on grain boundaries and grain boundary dislocation plugging. The relationship between the serrated flow behavior and the deformation mechanism has been discussed based on the experimental results.
更多
查看译文
关键词
GH4169 alloy,Tensile property,Deformation mechanism,Serrated flow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要