Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics

Ping Zhang,Jiachun Li,Yu Zhao, Jiaxiao Li

Scientific Reports(2023)

引用 0|浏览0
暂无评分
摘要
To investigate the effect of initial cracks on the fatigue performance of high-strength bolts for high-speed train brake discs, the fatigue crack propagation behavior of high-strength bolts under the coupling action of preload and dynamic fatigue load was investigated experimentally and numerically based on the theory of linear elastic fracture mechanics. Firstly, fatigue tests of high-strength bolts with initial crack defects were carried out, and then a three-dimensional accurate numerical model with the hexahedral mesh for a bolt-nut was established by MATLAB, and the fatigue crack propagation behaviors were investigated using ABAQUS-FRANC3D interactive technology. In this paper, the effects of the initial crack state, the bolt preload, the axial excitation load, and the friction coefficient of the screw pair on crack propagation life were emphatically studied, and the simulated crack propagation trajectory and crack propagation life agreed well with the experimental results. The findings indicated that 0°-oriented cracks beginning at the maximum principal stress were predicted to have the shortest fatigue life. The crack propagation life was sensitive to the initial crack size, the coefficient of initial crack geometry, and the bolt preload, but not to the friction coefficient of the screw pair. Furthermore, when evaluating the effect of fatigue load on crack propagation, the load ratio, the mean load, and the load range should all be considered.
更多
查看译文
关键词
Engineering,Materials science,Mathematics and computing,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要