ZnGeSe2 monolayer: water-splitting photocatalyst with ultrahigh solar conversion efficiency

Physical chemistry chemical physics : PCCP(2023)

引用 1|浏览17
暂无评分
摘要
Hydrogen production through solar water-splitting offers a clean and renewable solution to tackle the ongoing issues of energy scarcity and environmental pollution. Here, the solar water-splitting performance of the ZnGeSe2 monolayer was explored via first-principles calculations. Our calculated results reveal that the ZnGeSe2 monolayer embodies stable configurations and semiconducting properties with direct bandgaps ranging from 1.23 to 1.60 eV under the biaxial strain from -1% to +2%. The generated holes and electrons of the ZnGeSe2 monolayer are separately distributed because of the intrinsic dipole. The calculated band edges of the ZnGeSe2 monolayer are demonstrated to be favorable for solar water-splitting. Additionally, the ZnGeSe2 monolayer exhibits strong optical absorption in the whole visible region. The hydrogen and oxygen evolution reactions can be accomplished without cocatalysts. Of particular significance, the solar to hydrogen (STH) efficiency of the ZnGeSe2 monolayer reaches up to 32%, far exceeding the economic value (10%). In light of these hallmarks, the ZnGeSe2 monolayer is demonstrated as an excellent water-splitting photocatalyst.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要