Investigation of the acicular aragonite growth behavior in AOD stainless steel slag during slurry-phase carbonation.

The Science of the total environment(2023)

引用 0|浏览5
暂无评分
摘要
This study presents a novel method for producing acicular aragonite using argon oxygen decarburization (AOD) slag while controlling the reaction temperature, reaction time, stirring speed, and the magnesium-to‑calcium stoichiometric ratio. This approach provides steel plants with an opportunity to decrease their CO emissions and promote efficient resource utilization and CO storage through the production of high-quality value-added products. The experimental results showed that reaction temperature was the most significant factor affecting the carbonation efficiency of AOD slag, followed by reaction time, stirring speed, CO partial pressure, and the liquid-to-solid ratio (L/S). The study also found that elevated temperature and prolonged reaction duration favored the preferential precipitation of aragonite. Additionally, raising the temperature and the magnesium-to‑calcium stoichiometric ratio was shown to enhance the formation of aragonite, affecting its crystal growth orientation and dimensions. The optimal combination of reaction parameters for the preparation of acicular aragonite was found to be the reaction time of 8 h, the magnesium-to‑calcium stoichiometric ratio of 0.8, the reaction temperature of 120 °C, and the stirring speed of 200 r·min. Under these conditions, the resulting acicular aragonite exhibited excellent overall uniformity, a large aspect ratio, and a smooth crystal surface, with a content of 91.49 %, a single crystal length ranging from 9.86 to 32.6 μm, and a diameter ranging from 0.63 to 2.15 μm. This study provides valuable insights into the efficient production of acicular aragonite from steel slag while reducing CO emissions and promoting the sustainable use of resources.
更多
查看译文
关键词
AOD slag,CO2,Carbonation,Acicular aragonite,Growth behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要