Effective treatment of a broad-host-range lytic phage SapYZU15 in eliminating Staphylococcus aureus from subcutaneous infection.

Microbiological research(2023)

引用 0|浏览3
暂无评分
摘要
Multidrug resistance (MDR) Staphylococcus aureus is frequently isolated from food products, and can cause severe clinical infection. Bacteriophage (phage) therapy is a promising biocontrol agent against MDR S. aureus in food contamination and clinical infections. In this study, the antimicrobial susceptibility of 47 S. aureus isolates from three swine farms, two slaughterhouses, and four markets (Yangzhou, China) were evaluated. The biological characteristics of four lytic S. aureus phages were compared and the lytic activity of phage SapYZU15 against MDR S. aureus was assessed using milk, fresh pork and a mouse model of subcutaneous abscess. The results showed that 28 S. aureus isolates (59.6%, 28/47) exhibited multiple antibiotic resistance to at least three different classes of antibiotics. Compared to SapYZU01, SapYZU02, and SapYZU03, SapYZU15 had a shorter latent period (10 min), larger burst size (322.00 PFU/cell), broader host range, wider temperature stability (-80 to 50 °C), and pH stability. Furthermore, SapYZU15 significantly reduces the counts of S. aureus in milk and pork (5.69 and 1.16 log colony-forming unit/mL, respectively) at 25 °C and controls the growth of S. aureus at 4 °C. Compared to the mice infected with S. aureus MRSA JCSC 4744 and cocktail (S. aureus YZUsa1, YZUsa4, YZUsa12, YZUsa14, and MRSA JCSC 4744), treatment with SapYZU15 led to faster tissue healing, less weight loss, and lower viable S. aureus counts in the murine abscess model. Moreover, prevention with SapYZU15 effectively inhibited abscess formation through a synergistic effect with pro-inflammatory cytokines. Consequently, our results suggest that SapYZU15 is an effective strategy for controlling S. aureus contamination in food products, and possesses an immense potential to treat and prevent clinic infection caused by MDR S. aureus strains. The interactions and mechanisms between SapYZU15 and its bacterial host differed depending on the model, temperature, and multiplicity of infection (MOI).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要