Validating SMT Solvers via Skeleton Enumeration Empowered by Historical Bug-Triggering Inputs.

ICSE(2023)

引用 1|浏览20
暂无评分
摘要
SMT solvers check the satisfiability of logic formulas over first-order theories, which have been utilized in a rich number of critical applications, such as software verification, test case generation, and program synthesis. Bugs hidden in SMT solvers would severely mislead those applications and further cause severe consequences. Therefore, ensuring the reliability and robustness of SMT solvers is of critical importance. Although many approaches have been proposed to test SMT solvers, it is still a challenge to discover bugs effectively. To tackle such a challenge, we conduct an empirical study on the historical bug-triggering formulas in SMT solvers' bug tracking systems. We observe that the historical bug-triggering formulas contain valuable skeletons (i.e., core structures of formulas) as well as associated atomic formulas which can cast significant impacts on formulas' ability in triggering bugs. Therefore, we propose a novel approach that utilizes the skeletons extracted from the historical bug-triggering formulas and enumerates atomic formulas under the guidance of association rules derived from historical formulas. In this study, we realized our approach as a practical fuzzing tool HistFuzz and conducted extensive testing on the wellknown SMT solvers Z3 and cvc5. To date, HistFuzz has found 111 confirmed new bugs for Z3 and cvc5, of which 108 have been fixed by the developers. More notably, out of the confirmed bugs, 23 are soundness bugs and invalid model bugs found in the solvers' default mode, which are essential for SMT solvers. In addition, our experiments also demonstrate that HistFuzz outperforms the state-of-the-art SMT solver fuzzers in terms of achieved code coverage and effectiveness.
更多
查看译文
关键词
SMT solver, fuzzing, skeleton enumeration, association rules, bug detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要