NVLeak: Off-Chip Side-Channel Attacks via Non-Volatile Memory Systems

PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM(2023)

引用 7|浏览22
暂无评分
摘要
We study microarchitectural side-channel attacks and defenses on non-volatile RAM (NVRAM) DIMMs. In this study, we first perform reverse-engineering of NVRAMs as implemented by the Intel Optane DIMM and reveal several of its previously undocumented microarchitectural details: on-DIMM cache structures (NVCache) and wear-leveling policies. Based on these findings, we first develop cross-core and cross-VM covert channels to establish the channel capacity of these shared hardware resources. Then, we devise NVCache-based side channels under the umbrella of NVLeak. We apply NVLeak to a series of attack case studies, including compromising the privacy of databases and key-value storage backed by NVRAM and spying on the execution path of code pages when NVRAM is used as a volatile runtime memory. Our results show that side-channel attacks exploiting NVRAM are practical and defeat previously-proposed defense that only focuses on on-chip hardware resources. To fill this gap in defense, we develop system-level mitigations based on cache partitioning to prevent side-channel leakage from NVCache.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要