Synthesis of germanium/germanium phosphide in-plane heterostructure with efficient photothermal and enhanced photodynamic effects in the second near-infrared biowindow.

Journal of colloid and interface science(2023)

引用 0|浏览6
暂无评分
摘要
Inspired by the bifunctional phototherapy agents (PTAs), constructing compact PTAs with efficient photothermal therapy (PTT) and photodynamic therapy (PDT) effects in the near-infrared (NIR-II) biowindow is crucial for high therapeutic efficacy. Herein, none-layered germanium (Ge) is transformed to layered Ge/germanium phosphide (Ge/GeP) structure, and a novel two-dimensional sheet-like compact S-scheme Ge/GeP in-plane heterostructure with a large extinction coefficient of 15.66 L/g cm at 1,064 nm is designed and demonstrated. In addition to the outstanding photothermal effects, biocompatibility and degradability, type I and type II PDT effects are activated by a single laser. Furthermore, enhanced reactive oxygen species generation under longer wavelength NIR laser irradiation is achieved, and production of singlet oxygen and superoxide radical upon 1,064 nm laser irradiation is more than double that under 660 nm laser irradiation. The S-scheme charge transfer mechanism between Ge and GeP, is demonstrated by photo-irradiated Kelvin probe force microscopy and electron spin resonance analysis. Thus, the obtained S-scheme Ge/GeP in-plane heterostructure shows synergistic therapeutic effects of PTT/PDT both in vitro and in vivo in the NIR-II biowindow and the novel nanoplatform with excellent properties has large clinical potential.
更多
查看译文
关键词
Second near-infrared biowindow,Germanium,In-plane heterostructure,Photothermal therapy,Photodynamic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要