Complete genome of an inhibitor-resistant blaTEM-30 encoding Escherichia coli sequence type 127 isolate identified in human saliva with a high genotypic virulence load.

Niamh McEvoy, Andy O'Connor,Francesca McDonagh, Aneesa Mangalam Lonappan,Maeve Louise Farrell, Aneta Kovarova,Liam Burke, Kate Ryan,Brian Hallahan,Georgios Miliotis

Journal of global antimicrobial resistance(2023)

引用 0|浏览5
暂无评分
摘要
OBJECTIVES:Escherichia coli sequence type (ST) 127 is a pandemic lineage that belongs to the extraintestial pathogenic (ExPEC) family, mainly associated with urinary tract infections and bloodstream infections. Here, we report the complete genome of an E. coli ST 127 isolate which was identified in the saliva of a patient with treatment-resistant schizophrenia (TRS) exhibiting no signs of infection. The objective of this work is to determine the mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and virulence factors (VFs) that contribute to the pathogenicity of such ST127 isolates. METHODS:Whole-genome sequencing (WGS) of isolate GABEEC10 was performed using DNABseq and Nanopore MinION platforms. Hybrid assembly of GABEEC10 was conducted with Unicycler v. 0.5.0. and annotated using PROKKA v1.14.5. Comparative genomics and phylogenomics were conducted using average nucleotide identity (ANI) and approximately-maximum-likelihood phylogenetic inference. ARGs, VFs, and serotyping were identified with Abricate v1.0.0 using CARD, vfdb, and EcOH databases, respectively. RESULTS:Escherichia coli salivary isolate GABEEC10 was identified to belong to phylogroup B2 and have a serotype of O6 H31 with a total genome length of 4,940,530 bp and a mean guanine-cytosine (GC) content of 50.40 %. GABEEC10 was identified to have a highly virulent genotype with the presence of 84 VFs in addition to 44 ARGs, including an acquired blaTEM-30. The strain was identified to additionally carry four mobilisable plasmids. CONCLUSION:We report the complete genome of E. coli GABAEEC10 that can be used for gaining insights into the pathogenicity, drug resistance mechanisms, and dissemination patterns of the emerging pandemic lineage ST 127.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要