On the chromatic number of some ($P_3\cup P_2$)-free graphs

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
A hereditary class $\cal G$ of graphs is {\em $\chi$-bounded} if there is a {\em $\chi$-binding function}, say $f$, such that $\chi(G)\le f(\omega(G))$ for every $G\in\cal G$, where $\chi(G)(\omega(G))$ denotes the chromatic (clique) number of $G$. It is known that for every $(P_3\cup P_2)$-free graph $G$, $\chi(G)\le \frac{1}{6}\omega(G)(\omega(G)+1)(\omega(G)+2)$ \cite{BA18}, and the class of $(2K_2, 3K_1)$-free graphs does not admit a linear $\chi$-binding function\cite{BBS19}. In this paper, we prove that (\romannumeral 1) $\chi(G)\le2\omega(G)$ if $G$ is ($P_3\cup P_2$, kite)-free, (\romannumeral 2) $\chi(G)\le\omega^2(G)$ if $G$ is ($P_3\cup P_2$, hammer)-free, (\romannumeral 3) $\chi(G)\le\frac{3\omega^2(G)+\omega(G)}{2}$ if $G$ is ($P_3\cup P_2, C_5$)-free. Furthermore, we also discuss $\chi$-binding functions for $(P_3\cup P_2, K_4)$-free graphs.
更多
查看译文
关键词
chromatic number,graphs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要