The Apparent Impunity of the Basal Ganglia to Therapeutic Lesioning: Clinical and Scientific Lessons.

Movement disorders clinical practice(2023)

引用 0|浏览6
暂无评分
摘要
Movement Disorders Clinical PracticeEarly View VIEWPOINT The Apparent Impunity of the Basal Ganglia to Therapeutic Lesioning: Clinical and Scientific Lessons Mariana H.G. Monje MD, PhD, Mariana H.G. Monje MD, PhD orcid.org/0000-0002-0730-4061 HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USASearch for more papers by this authorJorge U. Mañez-Miró MD, Jorge U. Mañez-Miró MD orcid.org/0000-0002-8995-8340 HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid, Spain Neurology Department, IMED Hospitales, Valencia, SpainSearch for more papers by this authorJosé A. Obeso MD, PhD, Corresponding Author José A. Obeso MD, PhD [email protected] HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain Universidad San Pablo-CEU, Madrid, Spain CIBERNED, Instituto de Salud Carlos III, Madrid, Spain Correspondence to: José A. Obeso, CINAC, HM Puerta del Sur University Hospital, Móstoles, Madrid 28939, Spain; E-mail: [email protected]Search for more papers by this author Mariana H.G. Monje MD, PhD, Mariana H.G. Monje MD, PhD orcid.org/0000-0002-0730-4061 HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USASearch for more papers by this authorJorge U. Mañez-Miró MD, Jorge U. Mañez-Miró MD orcid.org/0000-0002-8995-8340 HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid, Spain Neurology Department, IMED Hospitales, Valencia, SpainSearch for more papers by this authorJosé A. Obeso MD, PhD, Corresponding Author José A. Obeso MD, PhD [email protected] HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain Universidad San Pablo-CEU, Madrid, Spain CIBERNED, Instituto de Salud Carlos III, Madrid, Spain Correspondence to: José A. Obeso, CINAC, HM Puerta del Sur University Hospital, Móstoles, Madrid 28939, Spain; E-mail: [email protected]Search for more papers by this author First published: 21 June 2023 https://doi.org/10.1002/mdc3.13787 MDCP Conference on Unmet Needs and Unanswered Questions in Clinical Practice—London, 2021. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 1994; 117(4): 877–897. 2Marsden CD. The mysterious motor function of the basal ganglia: the Robert Wartenberg lecture. Neurology 1982; 32(5): 514–539. 3Wu T, Hallett M. The influence of normal human ageing on automatic movements. J Physiol 2005; 562(2): 605–615. 4Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 2010; 14(4): 154–161. 5Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 2000; 23(10 suppl): S8–S19. 6Jahanshahi M, Obeso I, Rothwell JC, Obeso JA. A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci 2015; 16(12): 719–732. 7Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 2010; 11: 760–772. 8Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol 2013; 23(2): 229–238. 9Redgrave P, Costa RM. The Basal Ganglia. In: ER Kandel, JD Koester, SH Mack, S Siegelbaum, eds. Principles of Neuroscience. 6th ed. New York: McGraw Hill; 2021: 932–952. 10Krack P, Martinez-Fernandez R, del Alamo M, Obeso JA. Current applications and limitations of surgical treatments for movement disorders. Mov Disord 2017; 32(1): 36–52. 11Brown P, Eusebio A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord 2008; 23(1): 12–20. 12Bhatia KP, Marsden CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 1994; 117(4): 859–876. 13Laplane D, Baulac M, Widlocher D, Dubois B. Pure psychic akinesia with bilateral lesions of basal ganglia. J Neurol Neurosurg Psychiatry 1984; 47(4): 377–385. 14Merello M, Starkstein S, Nouzeilles MI, Kuzis G, Leiguarda R. Bilateral pallidotomy for treatment of Parkinson's disease induced corticobulbar syndrome and psychic akinesia avoidable by globus pallidus lesion combined with contralateral stimulation. J Neurol Neurosurg Psychiatry 2001; 71(5): 611–614. 15Crossman AR, Mitchell IJ, Sambrook MA. Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—induced parkinsonism in the macaque monkey. Neuropharmacology 1985; 24(6): 587–591. 16Mitchell IJ, Cross AJ, Sambrook MA, Crossman AR. Neural mechanisms mediating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake. Neurosci Lett 1986; 63(1): 61–65. 17Aziz TZ, Peggs D, Sambrook MA, Crossman AR. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 1991; 6(4): 288–292. 18Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990; 80: 1438. 19Guridi J, Herrero MT, Luquin R, Guillen J, Obeso JA. Subthalamotomy improves MPTP-lnduced parkinsonism in Monkeys1. Stereotact Funct Neurosurg [Internet] 1994; 62(1–4): 98–102. Available from: https://www.karger.com/Article/FullText/98603. 20Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 1994; 72(2): 521–530. 21Laitinen LV, Bergenheim AT, Hariz MI. Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J Neurosurg 1992; 76(1): 53–61. 22Ricardo Y, Pavon N, Alvarez L, et al. Long-term effect of unilateral subthalamotomy for Parkinson's disease. J Neurol Neurosurg Psychiatry 2019; 90: 1380–1381. 23Martínez-Fernández R, Natera-Villalba E, Máñez Miró JU, et al. Prospective long-term follow-up of focused ultrasound unilateral Subthalamotomy for Parkinson disease. Neurology 2023; 100(13): e1395–e1405. 24Bloem BR, Monje MHG, Obeso JA. Understanding motor control in health and disease: classic single (n = 1) observations. Exp Brain Res 2020; 238(7–8): 1593–1600. 25Brodal A. Self-observations and neuro-anatomical considerations after a stroke. Brain 1973; 96(4): 675–694. 26Pineda-Pardo JA, Sánchez-Ferro Á, Monje MHG, Pavese N, Obeso JA. Onset pattern of nigrostriatal denervation in early Parkinson's disease. Brain 2022; 145(3): 1018–1028. 27Obeso JA, Jahanshahi M, Alvarez L, et al. What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease. Exp Neurol 2009; 220(2): 283–292. 28Obeso I, Wilkinson L, Casabona E, et al. The subthalamic nucleus and inhibitory control: impact of subthalamotomy in Parkinson's disease. Brain 2014; 137(5): 1470–1480. 29Obeso I, Casabona E, Rodríguez-Rojas R, et al. Unilateral subthalamotomy in Parkinson's disease: cognitive, psychiatric and neuroimaging changes. Cortex 2017; 94: 39–48. 30Demakis GJ, Mercury MG, Sweet JJ, Rezak M, Eller T, Vergenz S. Qualitative analysis of verbal fluency before and after unilateral Pallidotomy. Clin Neuropsychol 2003; 17(3): 322–330. 31DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13(7): 281–285. 32Chevalier G, Deniau JM. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 1990; 13(7): 277–280. 33Hikosaka O, Wurtz RH. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiol 1983; 49(5): 1285–1301. 34Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10): 366–375. 35Gago B, Marin C, Rodríguez-Oroz MC, Obeso JA. L-dopa-induced dyskinesias in unilateral 6-hydroxydopamine-lesioned rats are not modified by excitotoxic lesion of the entopeduncular nucleus and substantia nigra pars reticulata. Synapse 2013; 67(7): 407–414. 36Carpenter MB, Whittier JR, Mettler FA. Analysis of choreoid hyperkinesia in the rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. J Comp Neurol 1950; 92(3): 293–331. 37Vitek JL, Giroux M. Physiology of hypokinetic and hyperkinetic movement disorders: model for dyskinesia. Ann Neurol 2000; 47(4 Suppl 1): S131–S140. 38Vitek JL, Bakay RAE, Freeman A, et al. Randomized trial of pallidotomy versus medical therapy for Parkinson's disease. Ann Neurol 2003; 53(5): 558–569. 39Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov Disord 2008; 23(suppl 3): 548–559. 40Boraud T, Bezard E, Bioulac B, Gross CE. From single extracellular unit recording in experimental and human parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog Neurobiol 2002; 66(4): 265–283. 41Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of parkinson's disease. Mov Disord 2003; 18(4): 357–363. 42Benabid AL, Koudsie A, Benazzouz A, Vercueil L, Fraix V, Chabardes S, et al. Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson's disease. Extension to new indications such as dystonia and epilepsy. J Neurol. 2001; 248: III37–III47. 43Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain 2005; 128(10): 2240–2249. 44Limousin P, Pollak P, Benazzouz A, Hoffmann D, Broussolle E, Perret JE, Benabid AL. Bilateral subthalamic nucleus stimulation for severe Parkinson's disease. Mov Disord 1995; 10(5): 672–674. 45Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J Neurophysiol 2001; 86(1): 249–260. 46Parkin S, Nandi D, Giladi N, et al. Lesioning the subthalamic nucleus in the treatment of Parkinson's disease. Stereotact Funct Neurosurg [Internet]. 2001; 77(1–4): 68–72. Available from: https://www.karger.com/Article/FullText/64599. 47Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 1998; 339(16): 1105–1111. 48Volkmann J, Sturm V, Weiss P, et al. Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson's disease. Ann Neurol 1998; 44(6): 953–961. 49Krishna V, Fishman PS, Eisenberg HM, et al. Trial of Globus pallidus focused ultrasound ablation in Parkinson's disease. N Engl J Med 2023; 388(8): 683–693. 50Cif L, Ruge D, Gonzalez V, et al. The influence of deep brain stimulation intensity and duration on symptoms evolution in an OFF stimulation dystonia study. Brain Stimul 2013; 6(4): 500–505. 51Ruge D, Cif L, Limousin P, Gonzalez V, Vasques X, Coubes P, Rothwell JC. Longterm deep brain stimulation withdrawal: clinical stability despite electrophysiological instability. J Neurol Sci 2014; 342(1–2): 197–199. 52Inase M, Buford JA, Anderson ME. Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey. J Neurophysiol 1996; 75(3): 1087–1104. 53Piron C, Kase D, Topalidou M, Goillandeau M, Orignac H, N'Guyen T, et al. The globus pallidus pars interna in goal-oriented and routine behaviors: resolving a long-standing paradox. Mov Disord 2016; 31(8): 1146–1154. 54Graybiel AM. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 1998; 70(1–2): 119–136. Early ViewOnline Version of Record before inclusion in an issue This article also appears in:MDCP Conference on Unmet Needs & Unanswered Questions in Clinical Practice ReferencesRelatedInformation
更多
查看译文
关键词
basal ganglia,therapeutic lesioning,clinical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要