Age of Information Diffusion on Social Networks: Optimizing Multi-Stage Seeding Strategies

PROCEEDINGS OF THE 2023 INTERNATIONAL SYMPOSIUM ON THEORY, ALGORITHMIC FOUNDATIONS, AND PROTOCOL DESIGN FOR MOBILE NETWORKS AND MOBILE COMPUTING, MOBIHOC 2023(2023)

引用 0|浏览13
暂无评分
摘要
To promote viral marketing, major social platforms (e.g., Facebook Marketplace and Pinduoduo) repeatedly select and invite different users (as seeds) in online social networks to share fresh information about a product or service with their friends. Thereby, we are motivated to optimize a multi-stage seeding process of viral marketing in social networks, and adopt the recent notions of the peak and the average age of information (AoI) to measure the timeliness of promotion information received by network users. Our problem is different from the literature on information diffusion in social networks, which limits to one-time seeding and overlooks AoI dynamics or information replacement over time. As a critical step, we manage to develop closed-form expressions that characterize and trace AoI dynamics over any social network. For the peak AoI problem, we first prove the NP-hardness of our multi-stage seeding problem by a highly non-straightforward reduction from the dominating set problem, and then present a new polynomial-time algorithm that achieves good approximation guarantees (e.g., less than 2 for linear network topology). For minimizing the average AoI, we also prove that our problem is NP-hard by properly reducing it from the set cover problem. Benefiting from our two-side bound analysis on the average AoI objective, we build up a new framework for approximation analysis and link our problem to a much simplified sum-distance minimization problem. This intriguing connection inspires us to develop another polynomial-time algorithm that achieves a good approximation guarantee. Additionally, our theoretical results are well corroborated by experiments on a real social network.
更多
查看译文
关键词
Age of information,social network,multi-stage seeding,NP-hardness,approximation algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要