Optimizing TMS Coil Placement Approaches for Targeting the Dorsolateral Prefrontal Cortex in Depressed Adolescents: An Electric Field Modeling Study.

Biomedicines(2023)

引用 1|浏览3
暂无评分
摘要
High-frequency repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (L-DLPFC) shows promise as a treatment for treatment-resistant depression in adolescents. Conventional rTMS coil placement strategies include the 5 cm, the Beam F3, and the magnetic resonance imaging (MRI) neuronavigation methods. The purpose of this study was to use electric field (E-field) models to compare the three targeting approaches to a computational E-field optimization coil placement method in depressed adolescents. Ten depressed adolescents (4 females, age: 15.9±1.1) participated in an open-label rTMS treatment study and were offered MRI-guided rTMS five times per week over 6-8 weeks. Head models were generated based on individual MRI images, and E-fields were simulated for the four targeting approaches. Results showed a significant difference in the induced E-fields at the L-DLPFC between the four targeting methods (χ2=24.7, p<0.001). Post hoc pairwise comparisons showed that there was a significant difference between any two of the targeting methods (Holm adjusted p<0.05), with the 5 cm rule producing the weakest E-field (46.0±17.4V/m), followed by the F3 method (87.4±35.4V/m), followed by MRI-guided (112.1±14.6V/m), and followed by the computational approach (130.1±18.1V/m). Variance analysis showed that there was a significant difference in sample variance between the groups (K2=8.0, p<0.05), with F3 having the largest variance. Participants who completed the full course of treatment had median E-fields correlated with depression symptom improvement (r=-0.77, p<0.05). E-field models revealed limitations of scalp-based methods compared to MRI guidance, suggesting computational optimization could enhance dose delivery to the target.
更多
查看译文
关键词
adolescent,adult,computational modeling,dorsolateral prefrontal cortex,electromagnetic fields,finite element analysis,major depressive disorder,transcranial magnetic stimulation,treatment,treatment-resistant depression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要