Hazardous Gases-Responsive Photonic Crystals Cryogenic Sensors Based on Antifreezing and Water Retention Hydrogels

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 0|浏览4
暂无评分
摘要
Nowadays, the sensing of hazardous gases is urgent for the consideration of public safety and human health, especially in extreme conditions of low temperatures. In this study, a photonic crystals (PhCs) sensor with water retention and antifreezing properties was developed and applied to visual hazardous gases sensing at low temperature, passively. The sensor was prepared by dip-coating with poly(methyl methacrylate) (PMMA) colloidal microspheres followed by embedding in k-carrageenan/polyacrylamide-ethylene glycol (k-CA/PAM-EG) hydrogel. The sensor responded to hazardous gases, including ammonia, toluene, xylene, acetone, methanol, ethanol, and 1-propanol, with a change in the reflection wavelength and visible structural color. At room temperature, the reflection wavelength of the sensor blue-shifted 49 nm in ammonia, and the structural color changed from red to yellow. For low temperatures, the sensor showed great water retention and antifreezing properties even at -57 degrees C due to the double network. The sensor still had a great response to hazardous gases after freezing at -20 degrees C for 12 h and testing at 0 degrees C, and the obtained results were similar to those at room temperature. Based on this excellent stability and visual sensing at low temperature, the sensor demonstrates the potential for detection of hazardous vapors in extreme environments.
更多
查看译文
关键词
water retention hydrogels,antifreezing,crystals,gases-responsive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要