Microfluidic-Assembled Covalent Organic Frameworks@Ti3 C2 Tx MXene Vertical Fibers for High-Performance Electrochemical Supercapacitors.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 6|浏览2
暂无评分
摘要
The delicate design of innovative and sophisticated fibers with vertical porous skeleton and eminent electrochemical activity to generate directional ionic pathways and good faradic charge accessibility is pivotal but challenging for realizing high-performance fiber-shaped supercapacitors (FSCs). Here, hierarchically ordered hybrid fiber combined vertical-aligned and conductive Ti3 C2 Tx MXene (VA-Ti3 C2 Tx ) with interstratified electroactive covalent organic frameworks LZU1 (COF-LZU1) by one-step microfluidic synthesis is developed. Due to the incorporation of vertical channels, abundant redox active sites and large accessible surface area throughout the electrode, the VA-Ti3 C2 Tx @COF-LZU1 fibers express exceptional gravimetric capacitance of 787 F g-1 in a three-electrode system. Additionally, the solid-state asymmetric FSCs deliver a prominent energy density of 27 Wh kg-1 , capacitance of 398 F g-1 and cycling life of 20 000 cycles. The key to high energy storage ability originates from the decreased ions adsorption energy and ameliorative charge density distribution in vertically aligned and active hybrid fiber, accelerating ions transportation/accommodation and interfacial electrons transfer. Benefiting from excellent electrochemical performance, the FSCs offer sufficient energy supply to power watches, flags, and digital display tubes as well as be integrated with sensors to detect pulse signals, which opens a promising route for architecting advanced fiber toward the carbon neutrality market beyond energy-storage technology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要