Rapid Recovery of Buoyancy in Eutrophic Environments Indicates That Cyanobacterial Blooms Cannot Be Effectively Controlled by Simply Collapsing Gas Vesicles Alone

Water(2023)

引用 0|浏览0
暂无评分
摘要
Many aquatic ecosystems are seriously threatened by cyanobacteria blooms; gas vesicles enable cyanobacteria to form harmful cyanobacterial blooms rapidly. Many lake managers try to control cyanobacterial blooms by collapsing gas vesicle, but it is still unclear whether gas vesicle recovery will cause this method to fail. Through the culture experiments of three cyanobacteria, it was found that all cyanobacteria with collapsed gas vesicles can rapidly regain buoyancy in a few days under nutrient-sufficient environments, and average gas vesicle content was even 9% higher than initially. In contrast, buoyancy recovery of all cyanobacteria under nutrient-limited environments was significantly worse. After culture experiments, the average gas vesicle content of all cyanobacteria in phosphorus-limited environments only reach 49% of the initial value. The gas vesicle content of two non-nitrogen-fixing cyanobacteria in nitrogen-limited environments only reached 38% of initial value. The buoyancy of cyanobacteria in different tropic levels was similar to the gas vesicle content. These results indicate that collapsing gas vesicles can only control cyanobacterial blooms in the short-term. To control cyanobacterial blooms in the long-term, in deep lakes, lake managers should discharge gas vesicles’ collapsed cyanobacteria into deep water. In shallow lakes, the disruption of gas vesicles must be combined with nutrient control measures to effectively control cyanobacteria blooms.
更多
查看译文
关键词
cyanobacteria,gas vesicles,recovery,buoyancy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要