The NANOGrav 15-year Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational Wave Background

Gabriella Agazie, Akash Anumarlapudi,Anne M. Archibald,P. T. Baker, M. Bazzan,Laura Blecha,Alexander Bonilla, A. Brazier,Paul R. Brook,S. Burke-Spolaor, Rand Burnette,Robin Case,J. Andrew Casey-Clyde,Maria Charisi,Shami Chatterjee,Katerina Chatziioannou, B. D. Cheeseboro,Siyuan Chen,Tyler Cohen,J. M. Cordes,N. Cornish,F. Crawford,H. T. Cromartie,Kathryn Crowter,Curt Cutler,Daniel J. D’Orazio,Megan E. DeCesar,Dallas DeGan,Paul Demorest,Heling Deng,Timothy Dolch, Brendan Drachler, E. C. Ferrara,William Fiore,Emmanuel Fonseca, Gabriel E. Freedman,Emiko Gardiner,Nate Garver-Daniels, Peter A. Gentile,Kyle A. Gersbach,Joseph Glaser,Deborah C. Good,Kayhan Gültekin,Jeffrey S. Hazboun, S. Hourihane,Kristina Islo,Ross J. Jennings,Aaron D. Johnson,Megan L. Jones,Andrew R. Kaiser,David L. Kaplan,Luke Zoltan Kelley,M. Kerr, J. S. Key,Nima Laal,Michael T. Lam,William G. Lamb,T. Joseph W. Lazio,N. Lewandowska,T. B. Littenberg,Tingting Liu,Jing Luo,R. Lynch,Chung‐Pei Ma, D. R. Madison, Alexander McEwen,James W. McKee,M. A. McLaughlin, Natasha McMann,Bradley W. Meyers,P. M. Meyers,Chiara M. F. Mingarelli,Andrea Mitridate,Priyamvada Natarajan, Cherry Ng,D. J. Nice,Stella Koch Ocker,Ken D. Olum,Timothy T. Pennucci,B. B. P. Perera,Polina Petrov,Nihan S. Pol, H. A. Radovan,S. M. Ransom,Paul S. Ray,Joseph D. Romano,Jessie C. Runnoe, Shashwat C. Sardesai, Ann Schmiedekamp, Carl Schmiedekamp,Kai Schmitz,Levi Schult,Brent J. Shapiro-Albert,X. Siemens,Joseph Simon,Magdalena S. Siwek,I. H. Stairs,D. R. Stinebring,K. Stovall, Jerry P. Sun, Abhimanyu Susobhanan, Joseph K. Swiggum, Jacob M. Taylor, Stephen R. Taylor, Jacob E. Turner, Caner Ünal, Michele Vallisneri, Sarah J. Vigeland, Jeremy M. Wachter, Haley M. Wahl,Qiaohong Wang, Caitlin A. Witt,David Wright,Olivia Young

arXiv (Cornell University)(2023)

引用 2|浏览23
暂无评分
摘要
The NANOGrav 15-year data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15-year observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values, or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach sub-parsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.
更多
查看译文
关键词
supermassive black hole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要