Differential toxicity of various mineral nanoparticles to Synechocystis sp.: With and without ciprofloxacin

JOURNAL OF HAZARDOUS MATERIALS(2023)

引用 0|浏览2
暂无评分
摘要
Mineral nanoparticles (M-NPs) are ubiquitous in aquatic environments, but their potential harms to primary producers and impacts on the toxicity of coexisting pollutants are largely unknown. Herein, the toxicity mechanisms of various M-NPs (i.e., SiO2, Fe2O3, Al2O3, and TiO2 NPs) to Synechocystis sp. in absence and presence of ciprofloxacin (CIP) were comprehensively investigated. The heteroaggregation of cells and M-NPs can hinder substrate transfer or light acquisition. The attraction between Synechocystis sp. and M-NPs increased in the order of SiO2 < Fe2O3 < Al2O3 ≈ TiO2 NPs. Therefore, SiO2 and Fe2O3 NPs exerted slight effects on physiology and proteome of Synechocystis sp.. Al2O3 NPs with the rod-like shape caused physical damage to cells. Differently, TiO2 NPs with photocatalytic activities provided photogenerated electrons for Synechocystis sp., promoting photosynthesis and the Calvin cycle for CO2 fixation. SiO2, Fe2O3, and Al2O3 NPs alleviated the toxicity of CIP in an adsorption-depended manner. Conversely, the combination of CIP and TiO2 NPs exerted more pronounced toxic effects compared to their individuals, and CIP disturbed the extracellular electron transfer from TiO2 NPs to cells. The findings highlight the different effects of TiO2 NPs from other M-NPs on cyanobacteria, either alone or in combination with CIP, and improve the understanding of toxic mechanisms of M-NPs.
更多
查看译文
关键词
Mineral nanoparticles (M-NPs),Ciprofloxacin (CIP),Combined toxicity,Synechocystis sp.
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要