Accelerated 3D MR neurography of the brachial plexus using deep learning–constrained compressed sensing

European radiology(2024)

引用 0|浏览10
暂无评分
摘要
Objectives To explore the use of deep learning–constrained compressed sensing (DLCS) in improving image quality and acquisition time for 3D MRI of the brachial plexus. Methods Fifty-four participants who underwent contrast-enhanced imaging and forty-one participants who underwent unenhanced imaging were included. Sensitivity encoding with an acceleration of 2 × 2 (SENSE4x), CS with an acceleration of 4 (CS4x), and DLCS with acceleration of 4 (DLCS4x) and 8 (DLCS8x) were used for MRI of the brachial plexus. Apparent signal-to-noise ratios (aSNRs), apparent contrast-to-noise ratios (aCNRs), and qualitative scores on a 4-point scale were evaluated and compared by ANOVA and the Friedman test. Interobserver agreement was evaluated by calculating the intraclass correlation coefficients. Results DLCS4x achieved higher aSNR and aCNR than SENSE4x, CS4x, and DLCS8x (all p < 0.05). For the root segment of the brachial plexus, no statistically significant differences in the qualitative scores were found among the four sequences. For the trunk segment, DLCS4x had higher scores than SENSE4x ( p = 0.04) in the contrast-enhanced group and had higher scores than SENSE4x and DLCS8x in the unenhanced group (all p < 0.05). For the divisions, cords, and branches, DLCS4x had higher scores than SENSE4x, CS4x, and DLCS8x (all p ≤ 0.01). No overt difference was found among SENSE4x, CS4x, and DLCS8x in any segment of the brachial plexus (all p > 0.05). Conclusions In three-dimensional MRI for the brachial plexus, DLCS4x can improve image quality compared with SENSE4x and CS4x, and DLCS8x can maintain the image quality compared to SENSE4x and CS4x. Clinical relevance statement Deep learning–constrained compressed sensing can improve the image quality or accelerate acquisition of 3D MRI of the brachial plexus, which should be benefit in evaluating the brachial plexus and its branches in clinical practice. Key Points • Deep learning–constrained compressed sensing showed higher aSNR, aCNR, and qualitative scores for the brachial plexus than SENSE and CS at the same acceleration factor with similar scanning time . • Deep learning–constrained compressed sensing at acceleration factor of 8 had comparable aSNR, aCNR, and qualitative scores to SENSE4x and CS4x with approximately half the examination time . • Deep learning–constrained compressed sensing may be helpful in clinical practice for improving image quality and acquisition time in three-dimensional MRI of the brachial plexus .
更多
查看译文
关键词
Deep learning,Artificial intelligence,Magnetic resonance imaging,Brachial plexus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要