Non-Isocentric Geometry for Next-Generation Tomosynthesis With Super-Resolution

IEEE TRANSACTIONS ON MEDICAL IMAGING(2024)

引用 0|浏览4
暂无评分
摘要
Our lab at the University of Pennsylvania (UPenn) is investigating novel designs for digital breast tomosynthesis. We built a next-generation tomosynthesis system with a non-isocentric geometry (superior-to-inferior detector motion). This paper examines four metrics of image quality affected by this design. First, aliasing was analyzed in reconstructions prepared with smaller pixelation than the detector. Aliasing was assessed with a theoretical model of r-factor, a metric calculating amplitudes of alias signal relative to input signal in the Fourier transform of the reconstruction of a sinusoidal object. Aliasing was also assessed experimentally with a bar pattern (illustrating spatial variations in aliasing) and 360(degrees)-star pattern (illustrating directional anisotropies in aliasing). Second, the point spread function (PSF) was modeled in the direction perpendicular to the detector to assess out-of-plane blurring. Third, power spectra were analyzed in an anthropomorphic phantom developed by UPenn and manufactured by Computerized Imaging Reference Systems (CIRS), Inc. (Norfolk, VA). Finally, calcifications were analyzed in the CIRS Model 020 BR3D Breast Imaging Phantom in terms of signal-to-noise ratio (SNR); i.e., mean calcification signal relative to background-tissue noise. Image quality was generally superior in the non-isocentric geometry: Aliasing artifacts were suppressed in both theoretical and experimental reconstructions prepared with smaller pixelation than the detector. PSF width was also reduced at most positions. Anatomic noise was reduced. Finally, SNR in calcification detection was improved. (A potential trade-off of smaller-pixel reconstructions was reduced SNR; however, SNR was still improved by the detector-motion acquisition.) In conclusion, the non-isocentric geometry improved image quality in several ways.
更多
查看译文
关键词
Aliasing,digital breast tomosynthesis,Fourier transform,reconstruction,super-resolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要