Remote State Estimation with Privacy Against Active Eavesdroppers

CoRR(2023)

引用 0|浏览25
暂无评分
摘要
This paper considers a cyber-physical system under an active eavesdropping attack. A remote legitimate user estimates the state of a linear plant from the state information received from a sensor. Transmissions from the sensor occur via an insecure and unreliable network. An active eavesdropper may perform an attack during system operation. The eavesdropper intercepts transmissions from the sensor, whilst simultaneously sabotaging the data transfer from the sensor to the remote legitimate user to harm its estimation performance. To maintain state confidentiality, we propose an encoding scheme that is activated on the detection of an eavesdropper. Our scheme transmits noise based on a pseudo-random indicator, pre-arranged at the legitimate user and sensor. The transmission of noise harms the eavesdropper's performance, more than that of the legitimate user. Using the proposed encoding scheme, we impair the eavesdropper's expected estimation performance, whilst minimising expected performance degradation at the legitimate user. We explore the trade-off between state confidentiality and legitimate user performance degradation through selecting the probability that the sensor transmits noise. Under certain design choices, the trace of the expected estimation error covariance of the eavesdropper is greater than that of the legitimate user. Numerical examples are provided to illustrate the proposed encoding scheme.
更多
查看译文
关键词
remote state estimation,privacy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要