Zero-field-cooling exchange bias up to room temperature in the strained kagome antiferromagnet Mn3.1Sn0.9

Mingyue Zhao, Wei Guo, Xian Wu,Li Ma,Ping Song,Guoke Li,Congmian Zhen,Dewei Zhao,Denglu Hou

Materials horizons(2023)

引用 0|浏览9
暂无评分
摘要
Zero-field-cooling exchange bias (ZFC EB) has always been a research hotspot for researchers, because it can realize the movement of the magnetization hysteresis loop along the field axis without field cooling, which greatly expands the universality and convenience of the application of the exchange bias effect. Achieving ZFC EB at room temperature is an ongoing challenge. To this end, a design strategy from the sublattice level is proposed, and a wide temperature range ZFC EB up to room temperature with a vertical magnetization shift is observed in the strained kagome antiferromagnet Mn3.1Sn0.9. Magnetic analysis and first-principles calculations reveal that the ZFC EB arises from the strong exchange interaction between the non-coplanar antiferromagnetic Mn kagome sublattice occupying normal Mn sites and the collinear ferromagnetic Mn sublattice occupying Sn sites. This discovery is of great significance for the application of ZFC EB in antiferromagnetic spintronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要