An operational approach for large-scale mapping of water clarity levels in inland lakes using landsat images based on optical classification.

Shijiao Lu,Yingchun Bian,Fangfang Chen,Jie Lin,Heng Lyu,Yunmei Li,Huaiqing Liu, Yang Zhao, Yiling Zheng, Linze Lyu

Environmental research(2023)

引用 0|浏览13
暂无评分
摘要
Water clarity is a critical parameter of water, it is typically measured using the setter disc depth (SDD). The accurate estimation of SDD for optically varying waters using remote sensing remains challenging. In this study, a water classification algorithm based on the Landsat 5 TM/Landsat 8 OLI satellite was used to distinguish different water types, in which the waters were divided into two types by using the ad(443)/ap(443) ratio. Water type 1 refers to waters dominated by phytoplankton, while water type 2 refers to waters dominated by non-algal particles. For the different water types, a specific algorithm was developed based on 994 in situ water samples collected from Chinese inland lakes during 42 cruises. First, the Rrs(443)/Rrs(655) ratio was used for water type 1 SDD estimation, and the band combination of (Rrs(443)/Rrs(655) - Rrs(443)/Rrs(560)) was proposed for water type 2. The accuracy assessment based on an independent validation dataset proved that the proposed algorithm performed well, with an R2 of 0.85, mean absolute percentage error (MAPE) of 25.98%, and root mean square error (RMSE) of 0.23 m. To demonstrate the applicability of the algorithm, it was extensively evaluated using data collected from Lake Erie and Lake Huron, and the estimation accuracy remained satisfactory (R2 = 0.87, MAPE = 28.04%, RMSE = 0.76 m). Furthermore, compared with existing empirical and semi-analytical SDD estimation algorithms, the algorithm proposed in this paper showed the best performance, and could be applied to other satellite sensors with similar band settings. Finally, this algorithm was successfully applied to map SDD levels of 107 lakes and reservoirs located in the Middle-Lower Yangtze Plain (MLYP) from 1984 to 2020 at a 30 m spatial resolution, and it was found that 53.27% of the lakes and reservoirs in the MLYP generally show an upward trend in SDD. This research provides a new technological approach for water environment monitoring in regional and even global lakes, and offers a scientific reference for water environment management of lakes in the MLYP.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要