Near-Infrared II Semiconducting Polymer Dots: Chain Packing Modulation and High-Contrast Vascular Imaging in Deep Tissues.

ACS nano(2023)

引用 0|浏览9
暂无评分
摘要
Fluorescence imaging in the second near-infrared (NIR-II) window has attracted considerable interest in investigations of vascular structure and angiogenesis, providing valuable information for the precise diagnosis of early stage diseases. However, it remains challenging to image small blood vessels in deep tissues because of the strong photon scattering and low fluorescence brightness of the fluorophores. Here, we describe our combined efforts in both fluorescent probe design and image algorithm development for high-contrast vascular imaging in deep turbid tissues such as mouse and rat brains with intact skull. First, we use a polymer blending strategy to modulate the chain packing behavior of the large, rigid, NIR-II semiconducting polymers to produce compact and bright polymer dots (Pdots), a prerequisite for fluorescence imaging of small blood vessels. We further developed a robust Hessian matrix method to enhance the image contrast of vascular structures, particularly the small and weakly fluorescent vessels. The enhanced vascular images obtained in whole-body mouse imaging exhibit more than an order of magnitude improvement in the signal-to-background ratio (SBR) as compared to the original images. Taking advantage of the bright Pdots and Hessian matrix method, we finally performed through-skull NIR-II fluorescence imaging and obtained a high-contrast cerebral vasculature in both mouse and rat models bearing brain tumors. This study in Pdot probe development and imaging algorithm enhancement provides a promising approach for NIR-II fluorescence vascular imaging of deep turbid tissues.
更多
查看译文
关键词
polymer,imaging,near-infrared,high-contrast
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要