Oxidative stress and activation of H2A.X in lung alveolar epithelial cells (A549) by nanoparticulate carbon black.

A Niechoda, J Roslan, K Maciorowska, M Rosłan, K Ejsmont,A Holownia

Respiratory physiology & neurobiology(2023)

引用 0|浏览9
暂无评分
摘要
Fine airborne particulate matter enter the respiratory system, induce oxidative stress and initiate DNA damage. The aim of our study was the estimation of cell viability, oxidative stress, DNA damage, cell cycle alterations and activation of histone H2A.X. Experiments were done on lung alveolar epithelial (A549) cells grown for 24 hours with 200 µg·mL coarse carbon black (CB), or nanoparticulate CB (NPCB). Neither CB nor glutathione depletion altered cell viability, growth rates, and H2A.X expression while NPCB decreased cell viability, increased oxidative stress and DNA damage. The cell cycle was blocked at G0/G1. NPCB but not CB increased expression and activation of H2A.X at mRNA and protein levels. Co-expression data point to γH2A.X as a major NPCB target, and show the interdependence of γH2A.X and oxidative stress. We conclude, that NPCB increases γ-H2A.X expression in A549 cells at mRNA and protein levels and stimulates H2A.X (Ser139), phosphorylation, associated with oxidative stress, the DNA damage response and G1 cell cycle arrest.
更多
查看译文
关键词
A549, Histone H2A.X, DNA damage, Air particulate matter, Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要