Neuroprotective Effects of Tinospora cordifolia via Reducing the Oxidative Stress and Mitochondrial Dysfunction against Rotenone-Induced PD Mice.

ACS chemical neuroscience(2023)

引用 0|浏览7
暂无评分
摘要
Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.
更多
查看译文
关键词
oxidative stress,neuroprotective effects,mitochondrial dysfunction,rotenone-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要