Riemannian geometry for efficient analysis of protein dynamics data

CoRR(2023)

引用 0|浏览3
暂无评分
摘要
An increasingly common viewpoint is that protein dynamics data sets reside in a non-linear subspace of low conformational energy. Ideal data analysis tools for such data sets should therefore account for such non-linear geometry. The Riemannian geometry setting can be suitable for a variety of reasons. First, it comes with a rich structure to account for a wide range of geometries that can be modelled after an energy landscape. Second, many standard data analysis tools initially developed for data in Euclidean space can also be generalised to data on a Riemannian manifold. In the context of protein dynamics, a conceptual challenge comes from the lack of a suitable smooth manifold and the lack of guidelines for constructing a smooth Riemannian structure based on an energy landscape. In addition, computational feasibility in computing geodesics and related mappings poses a major challenge. This work considers these challenges. The first part of the paper develops a novel local approximation technique for computing geodesics and related mappings on Riemannian manifolds in a computationally feasible manner. The second part constructs a smooth manifold of point clouds modulo rigid body group actions and a Riemannian structure that is based on an energy landscape for protein conformations. The resulting Riemannian geometry is tested on several data analysis tasks relevant for protein dynamics data. It performs exceptionally well on coarse-grained molecular dynamics simulated data. In particular, the geodesics with given start- and end-points approximately recover corresponding molecular dynamics trajectories for proteins that undergo relatively ordered transitions with medium sized deformations. The Riemannian protein geometry also gives physically realistic summary statistics and retrieves the underlying dimension even for large-sized deformations within seconds on a laptop.
更多
查看译文
关键词
protein dynamics data,protein dynamics,riemannian geometry,efficient analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要