Microwave photon detection at parametric criticality

PRX Quantum(2023)

引用 0|浏览8
暂无评分
摘要
The detection of microwave fields at single-photon power levels is a much sought-after technology, with practical applications in nanoelectronics and quantum information science. Here we demonstrate a simple yet powerful criticality-enhanced method of microwave photon detection by operating a magnetic-field tunable Kerr Josephson parametric amplifier near a first-order quantum phase transition. We obtain a 73% efficiency and a dark-count rate of 167 kHz, corresponding to a responsivity of $1.3 \times 10^{17}~\mathrm{W}^{-1}$ and noise-equivalent power of 3.28 zW/$\sqrt{\rm Hz}$. We verify the single-photon operation by extracting the Poissonian statistics of a coherent probe signal.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要