Maize Genotypes Sensitive and Tolerant to Low Phosphorus Levels Exhibit Different Transcriptome Profiles under Talaromyces purpurogenus Symbiosis and Low-Phosphorous Stress.

International journal of molecular sciences(2023)

引用 1|浏览1
暂无评分
摘要
, an endophytic fungus, exhibits beneficial effects on plants during plant-fungus interactions. However, the molecular mechanisms underlying plants' responses to under low-phosphorous (P) stress are not fully understood. In this study, we investigated the transcriptomic changes in maize with low-P-sensitive (31778) and -tolerant (CCM454) genotypes under low-P stress and its symbiotic interaction with . Its colonization enhanced plant growth and facilitated P uptake, particularly in 31778. Transcriptome sequencing revealed that 135 DEGs from CCM454 and 389 from 31778 were identified, and that only 6 DEGs were common. This suggested that CCM454 and 31778 exhibited distinct molecular responses to inoculation. GO and KEGG analysis revealed that DEGs in 31778 were associated with nicotianamine biosynthesis, organic acid metabolic process, inorganic anion transport, biosynthesis of various secondary metabolites and nitrogen metabolism. In CCM454, DEGs were associated with anthocyanin biosynthesis, diterpenoid biosynthesis and metabolic process. After inoculation, the genes associated with phosphate transporter, phosphatase, peroxidase and high-affinity nitrate transporter were upregulated in 31778, whereas AP2-EREBP-transcription factors were detected at significantly higher levels in CCM454. This study provided insights on the molecular mechanisms underlying plant-endophytic fungus symbiosis and low-P stress in maize with low-P-sensitive and -tolerant genotypes.
更多
查看译文
关键词
talaromyces purpurogenus symbiosis,maize,phosphorus,low-phosphorous
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要