Construction of II-type and Z-scheme binding structure in P-doped graphitic carbon nitride loaded with ZnO and ZnTCPP boosting photocatalytic hydrogen evolution.

Journal of colloid and interface science(2023)

引用 1|浏览12
暂无评分
摘要
A ternary heterostructure (ZnPPO) was constructed by loading ZnO and tetrakis (4-carboxyphenyl) zinc porphyrin (ZnTCPP) with P-doped g-C3N4 (PCN). In contrast to binary heterostructures (PCN-ZnO, ZnTCPP-ZnO and ZnTCPP-PCN) and single components (PCN, ZnTCPP and ZnO), ZnPPO has superior photocatalytic activity for H2 generation from water splitting. It is revealed that a binding structure of Ⅱ-type and Z-scheme has been constructed in ZnPPO, which plays a vital role in transferring photo-excited charge carriers. The significant enhancement of photocatalytic activity in ZnPPO is attributed to the effective transfer of photo-generated electrons and holes between the components of the ternary heterostructure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要