Identification and characterization of long noncoding RNAs in two contrasting olive (Olea europaea L.) genotypes subjected to aluminum toxicity.

Plant physiology and biochemistry : PPB(2023)

引用 0|浏览9
暂无评分
摘要
Aluminum (Al) toxcity is considered to be the primary factor limiting crop productivity in acidic soil. Many studies indicate that long non-coding RNAs (lncRNAs) fulfil a crucial role in plant growth and responses to different abiotic stress. However, identification and characterization of lncRNAs responsive to Al stress at a genome-wide level in olive tree is still lacking. Here, we performed comparative analysis on lncRNA transcriptome between Zhonglan (an Al-tolerant genotype) and Frantoio selezione (Al-sensitive) responding to Al exposure. A total of 19,498 novel lncRNAs were identified from both genotypes, and 6900 lncRNA-target pairs were identified as cis-acting and 2311 supposed to be trans-acting. Among them, 2076 lncRNAs were appraised as Al tolerance-associated lncRNAs due to their distinctly genotype-specific expression profiles under Al exposure. Target prediction and functional analyses revealed several key lncRNAs are related to genes encoding pectinesterases, xyloglucan endotransglucosylase/hydrolase, WRKY and MYB transcription factors, which mainly participate in the modification of cell wall for Al tolerance. Furthermore, gene co-expression network analysis showed 8 lncRNA-mRNA-miRNA modules participate in transcriptional regulation of downstream Al resistant genes. Our findings increased our understanding about the function of lncRNAs in responding to Al stress in olive and identified potential promising lncRNAs for further investigation.
更多
查看译文
关键词
long noncoding rnas,olive,genotypes,aluminum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要