Datasets, tasks, and training methods for large-scale hypergraph learning

DATA MINING AND KNOWLEDGE DISCOVERY(2023)

引用 0|浏览2
暂无评分
摘要
Relations among multiple entities are prevalent in many fields, and hypergraphs are widely used to represent such group relations. Hence, machine learning on hypergraphs has received considerable attention, and especially much effort has been made in neural network architectures for hypergraphs (a.k.a., hypergraph neural networks). However, existing studies mostly focused on small datasets for a few single-entity-level downstream tasks and overlooked scalability issues, although most real-world group relations are large-scale. In this work, we propose new tasks, datasets, and scalable training methods for addressing these limitations. First, we introduce two pair-level hypergraph-learning tasks to formulate a wide range of real-world problems. Then, we build and publicly release two large-scale hypergraph datasets with tens of millions of nodes, rich features, and labels. After that, we propose PCL , a scalable learning method for hypergraph neural networks. To tackle scalability issues, PCL splits a given hypergraph into partitions and trains a neural network via contrastive learning. Our extensive experiments demonstrate that hypergraph neural networks can be trained for large-scale hypergraphs by PCL while outperforming 16 baseline models. Specifically, the performance is comparable, or surprisingly even better than that achieved by training hypergraph neural networks on the entire hypergraphs without partitioning.
更多
查看译文
关键词
Large-scale hypergraph datasets,Scalable hypergraph learning,Hypergraph neural networks,Contrastive learning,Partitioning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要