Strengthening collaborations at the Biology-Physics interface: trends in antimicrobial photodynamic therapy

Biophysical reviews(2023)

引用 1|浏览1
暂无评分
摘要
The unbridled use of antimicrobial drugs over the last decades contributed to the global dissemination of drug-resistant pathogens and increasing rates of life-threatening infections for which limited therapeutic options are available. Currently, the search for safe, fast, and effective therapeutic strategies to combat infectious diseases is a worldwide demand. Antimicrobial photodynamic therapy (APDT) rises as a promising therapeutic approach against a wide range of pathogenic microorganisms. APDT combines light, a photosensitizing drug (PS), and oxygen to kill microorganisms by oxidative stress. Since the APDT field involves branches of biology and physics, the strengthening of interdisciplinary collaborations under the aegis of biophysics is welcome. Given this scenario, Brazil is one of the global leaders in the production of APDT science. In this review, we provide detailed reports of APDT studies published by the Laboratory of Optical Therapy (IPEN-CNEN), Group of Biomedical Nanotechnology (UFPE), and collaborators over the last 10 years. We present an integrated perspective of APDT from basic research to clinical practice and highlight its promising use, encouraging its adoption as an effective and safe technology to tackle important pathogens. We cover the use of methylene blue (MB) or Zn(II) porphyrins as PSs to kill bacteria, fungi, parasites, and pathogenic algae in laboratory assays. We describe the impact of MB-APDT in Dentistry and Veterinary Medicine to treat different infectious diseases. We also point out future directions combining APDT and nanotechnology. We hope this review motivates further APDT studies providing intuitive, vivid, and insightful information for the readers.
更多
查看译文
关键词
Antimicrobial resistance,Methylene blue,Photodynamic inactivation,Photosensitizer,Zn(II) porphyrin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要