Design Analysis of Prosthetic Unilateral Transtibial Lower Limb with Gait Coordination

PROSTHESIS(2023)

引用 0|浏览1
暂无评分
摘要
People with lower limb amputations struggle through difficulties during locomotion in their daily activities. People with transtibial amputations take support from prosthetic legs for systematic movement. During motion, they experience some mobility issues while using general prosthetic limbs regarding gait pattern. The design of a prosthetic-controlled lower limb with gait synchronization for physically disabled persons is the main goal of the present research work, which can provide an improved walking experience. The design and performance analysis of prosthetic lower limbs for people with transtibial amputations is performed in the present paper. The designed rehabilitation system shows synchronization between the normal and the prosthetic limbs achieved with gait coordination. The dynamics of the lower extremities in different postural activities are used for design purpose utilizing Euler-Lagrange motion theory. The artificial motion of the knee and the ankle joints function through the angular movement of the servo motors according to the movements of the rotary encoders placed on the sound limb joints. The range of motion of both the sound and prosthetic limbs are compared for different steps during a gait cycle. The prosthetic electronic system design of the artificial lower limb is able to show the gait style of human being with body kinesics. The nonlinear domain stability analysis of the designed prosthetic limb is presented through the Lyapunov method. A PIDF2 controller tuning process is implemented for the designed limb's performance improvement. The designed prosthetic system is beneficial for people with unilateral transtibial amputations with a great societal impact.
更多
查看译文
关键词
gait
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要