The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review

ELECTRONICS(2023)

引用 2|浏览6
暂无评分
摘要
Throughout human history, agriculture has undergone a series of progressive transformations based on ever-evolving technologies in an effort to increase productivity and profitability. Over the years, farming methods have evolved significantly, progressing from Agriculture 1.0, which relied on primitive tools, to Agriculture 2.0, which incorporated machinery and advanced farming practices, and subsequently to Agriculture 3.0, which emphasized mechanization and employed intelligent machinery and technology to enhance productivity levels. To further automate and increase agricultural productivity while minimizing agricultural inputs and pollutants, a new approach to agricultural management based on the concepts of the fourth industrial revolution is being embraced gradually. This approach is referred to as "Agriculture 4.0" and is mainly implemented through the use of Internet of Things (IoT) technologies, enabling the remote control of sensors and actuators and the efficient collection and transfer of data. In addition, fueled by technologies such as robotics, artificial intelligence, quantum sensing, and four-dimensional communication, a new form of smart agriculture, called "Agriculture 5.0," is now emerging. Agriculture 5.0 can exploit the growing 5G network infrastructure as a basis. However, only 6G-IoT networks will be able to offer the technological advances that will allow the full expansion of Agriculture 5.0, as can be inferred from the relevant scientific literature and research. In this article, we first introduce the scope of Agriculture 5.0 as well as the key features and technologies that will be leveraged in the much-anticipated 6G-IoT communication systems. We then highlight the importance and influence of these developing technologies in the further advancement of smart agriculture and conclude with a discussion of future challenges and opportunities.
更多
查看译文
关键词
agriculture,g-iot
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要