Controllable Fabrication and Rectification of Bipolar Nanofluid Diodes in Funnel-Shaped Si3N4 Nanopores

SMALL(2023)

引用 0|浏览2
暂无评分
摘要
Solid-state nanopores attract widespread interest, owning to outstanding robustness, extensive material availability, as well as capability for flexible manufacturing. Bioinspired solid-state nanopores further emerge as potential nanofluidic diodes for mimicking the rectification progress of unidirectional ionic transport in biological K+ channels. However, challenges that remain in rectification are over-reliance on complicated surface modifications and limited control accuracy in size and morphology. In this study, suspended Si3N4 films of only 100 nm thickness are used as substrate and funnel-shaped nanopores are controllably etched on that with single-nanometer precision, by focused ion beam (FIB) equipped with a flexibly programmable ion dose at any position. A small diameter 7 nm nanopore can be accurately and efficiently fabricated in only 20 ms and verified by a self-designed mathematical model. Without additional modification, funnel-shaped Si3N4 nanopores functioned as bipolar nanofluidic diodes achieve high rectification by simply filling each side with acidic and basic solution, respectively. Main factors are finely tuned experimentally and simulatively to enhance the controllability. Moreover, nanopore arrays are efficiently prepared to further improve rectification performance, which has great potential for high-throughput practical applications such as extended release of drugs, nanofluidic logic systems, and sensing for environmental monitoring and clinical diagnosis.
更多
查看译文
关键词
bipolar nanofluid diodes,nanopores
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要