Differentially Private Graph Neural Network with Importance-Grained Noise Adaption

CoRR(2023)

引用 0|浏览2
暂无评分
摘要
Graph Neural Networks (GNNs) with differential privacy have been proposed to preserve graph privacy when nodes represent personal and sensitive information. However, the existing methods ignore that nodes with different importance may yield diverse privacy demands, which may lead to over-protect some nodes and decrease model utility. In this paper, we study the problem of importance-grained privacy, where nodes contain personal data that need to be kept private but are critical for training a GNN. We propose NAP-GNN, a node-importance-grained privacy-preserving GNN algorithm with privacy guarantees based on adaptive differential privacy to safeguard node information. First, we propose a Topology-based Node Importance Estimation (TNIE) method to infer unknown node importance with neighborhood and centrality awareness. Second, an adaptive private aggregation method is proposed to perturb neighborhood aggregation from node-importance-grain. Third, we propose to privately train a graph learning algorithm on perturbed aggregations in adaptive residual connection mode over multi-layers convolution for node-wise tasks. Theoretically analysis shows that NAP-GNN satisfies privacy guarantees. Empirical experiments over real-world graph datasets show that NAP-GNN achieves a better trade-off between privacy and accuracy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要