Electronic correlations and flattened band in magnetic Weyl semimetal candidate Co 3 Sn 2 S 2

Nature Communications(2020)

引用 0|浏览3
暂无评分
摘要
The interplay between electronic correlations and topological protection may offer a rich avenue for discovering emergent quantum phenomena in condensed matter. However, electronic correlations have so far been little investigated in Weyl semimetals (WSMs) by experiments. Here, we report a combined optical spectroscopy and theoretical calculation study on the strength and effect of electronic correlations in a magnet Co 3 Sn 2 S 2 . The electronic kinetic energy estimated from our optical data is about half of that obtained from single-particle ab initio calculations in the ferromagnetic ground state, which indicates intermediate-strength electronic correlations in this system. Furthermore, comparing the energy and side-slope ratios between the interband-transition peaks at high energies in the experimental and single-particle-calculation-derived optical conductivity spectra with the bandwidth-renormalization factors obtained by many-body calculations enables us to estimate the Coulomb-interaction strength ( U ∼ 4 eV) in Co 3 Sn 2 S 2 . Besides, a sharp experimental optical conductivity peak at low energy, which is absent in the single-particle-calculation-derived spectrum but is consistent with the optical conductivity peaks obtained by many-body calculations with U ∼ 4 eV, indicates that an electronic band connecting the two Weyl cones is flattened by electronic correlations and emerges near the Fermi energy in Co 3 Sn 2 S 2 . Our work paves the way for exploring flat-band-generated quantum phenomena in WSMs.
更多
查看译文
关键词
Magnetic properties and materials,Topological insulators,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要