A Semisynthetic Bioluminescence Sensor for Ratiometric Imaging of Metal Ions In Vivo Using DNAzymes Conjugated to An Engineered Nano-Luciferase.

Angewandte Chemie (International ed. in English)(2023)

引用 0|浏览27
暂无评分
摘要
DNA-based probes have gained significant attention as versatile tools for biochemical analysis, benefiting from their programmability and biocompatibility. However, most existing DNA-based probes rely on fluorescence as the signal output, which can be problematic due to issues like autofluorescence and scattering when applied in complex biological materials such as living cells or tissues. Herein, we report the development of bioluminescent nucleic acid (bioLUNA) sensors that offer laser excitation-independent and ratiometric imaging of the target in vivo. The system is based on computational modelling and mutagenesis investigations of a genetic fusion between circular permutated Nano-luciferase (NLuc) and HaloTag, enabling the conjugation of the protein with a DNAzyme. In the presence of Zn , the DNAzyme sensor releases the fluorophore-labelled strand, leading to a reduction in bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. Consequently, this process induces ratiometric changes in the bioluminescent signal. We demonstrated that this bioLUNA sensor enabled imaging of both exogenous Zn in vivo and endogenous Zn efflux in normal epithelial prostate and prostate tumors. This work expands the DNAzyme sensors to using bioluminescence and thus has enriched the toolbox of nucleic acid sensors for a broad range of biomedical applications.
更多
查看译文
关键词
Bioluminescence, DNAzyme, Nucleic Acid Sensor, In Vivo Imaging, Protein Engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要