Mechanical control of cell proliferation patterns in growing tissues.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览6
暂无评分
摘要
Cell proliferation plays a crucial role in regulating tissue homeostasis and development. However, our understanding of how cell proliferation is controlled in densely packed tissues is limited. Here we develop a computational framework to predict the patterns of cell proliferation in growing tissues, connecting single-cell behaviors and cell-cell interactions to tissue-level growth. Our model incorporates probabilistic rules governing cell growth, division, and elimination, while also taking into account their feedback with tissue mechanics. In particular, cell growth is suppressed and apoptosis is enhanced in regions of high cell density. With these rules and model parameters calibrated using experimental data, we predict how tissue confinement influences cell size and proliferation dynamics, and how single-cell physical properties influence the spatiotemporal patterns of tissue growth. Our findings indicate that mechanical feedback between tissue confinement and cell growth leads to enhanced cell proliferation at tissue boundaries, whereas cell growth in the bulk is arrested. By tuning cellular elasticity and contact inhibition of proliferation we can regulate the emergent patterns of cell proliferation, ranging from uniform growth at low contact inhibition to localized growth at higher contact inhibition. Furthermore, mechanical state of the tissue governs the dynamics of tissue growth, with cellular parameters affecting tissue pressure playing a significant role in determining the overall growth rate. Our computational study thus underscores the impact of cell mechanical properties on the spatiotemporal patterns of cell proliferation in growing tissues.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要