Iron atomic cluster supported on Co/NC having superior water oxidation activity over iron single atom.

iScience(2023)

引用 0|浏览13
暂无评分
摘要
Carbon-supported iron-cobalt bimetallic electrocatalysts usually exhibit robust catalytic activity toward the oxygen evolution reaction (OER). However, the spatial isolation of Fe species at atomic level on cobalt-carbon solid remains a great challenge for practical catalytic applications in the OER. Here, we report the fabrication of CoFe bimetal porous carbon electrocatalysts by pyrolysis of molecularly defined iron complexes such as FePc (Pc = phthalocyanine) and Fe(acac) pre-encapsulated in the cavities of zeolitic imidazolate framework (ZIF)-67. With this unique strategy, high-loading atomic Fe nanoclusters (Fe-ACs) and Fe single atoms (Fe-SAs) were supported on Co/NC hybrids relying on the size of the molecular Fe precursors. The former exhibited superior OER performance to the single Fe atom-decorated Co/NC, as well as other ZIF-67-derived electrocatalysts. Theoretical modulation suggests Co as the OER active site for Fe-ACs@Co/NC at the -formed FeOOH-ACs/CoO interface, while Fe was proposed as the active site for Fe-SAs@Co/NC.
更多
查看译文
关键词
Interface science,Electrochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要