Formation of Massive and Wide First-star Binaries in Radiation Hydrodynamic Simulations

ASTROPHYSICAL JOURNAL(2023)

引用 0|浏览6
暂无评分
摘要
We study the formation of Population III stars by performing radiation hydrodynamic simulations for three different initial clouds extracted from cosmological hydrodynamic simulations. Starting from the cloud collapse stage, we follow the growth of protostars by accretion for similar to 10(5) yr until the radiative feedback from the protostars suppresses the accretion and the stellar properties are nearly fixed. We find that Population III stars form in massive and wide binary/small-multiple stellar systems, with masses >30 M-circle dot and separations >2000 au. We also find that the properties of the final stellar system correlate with those of the initial clouds: the total mass increases with the cloud-scale accretion rate, and the angular momentum of the binary orbit matches that of the initial cloud. While the total mass of the system in our simulations is consistent with our previous single-star formation simulations, individual masses are lower due to mass sharing, suggesting potential modification in the extent of feedback from Population III stars in the subsequent evolution of the Universe. We also identify such systems as mini-binaries embedded in a wider outer multiple-star system, which could evolve into progenitors for observed gravitational wave events.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要